Grinding effects on surface integrity and mechanical strength of WC-Co cemented carbides

نویسندگان

  • Jing Yang
  • Magnus Odén
  • M. P. Johansson-Joesaar
  • L. Llanes
چکیده

In this study, the correlation existing among grinding, surface integrity, and flexural strength is investigated for WC-Co cemented carbides (hardmetals). A fine-grained WC-13 wt % Co grade and three different surface conditions: (1) ground, (2) mirror-like polished (reference), and (3) ground plus high-temperature annealed, are investigated. Surface integrity and mechanical characterization is complemented with fractography. The grinding strongly affects both surface integrity and flexural strength. During grinding, a damaged thin layer together with high compressive residual stresses is introduced. The layer results in considerable strength enhancement compared to the reference polished surface condition. Fractography reveals that the improved strength mainly stems from grinding-induced changes on effective location, from surface into subsurface levels, of the strengthcontrolling flaw. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of The International Scientific Committee of the “2nd Conference on Surface Integrity” in the person of the Conference Chair Prof Dragos Axinte [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grinding effects on surface integrity, flexural strength and contact damage resistance of coated hardmetals

The tribological and mechanical behavior of coated tools depends not only on intrinsic properties of the deposited film but also on substrate surface and subsurface properties – such as topography and residual stress state – as well as on interface adhesion strength. It is particularly true in the case of coated tools based on WC-Co cemented carbides (backbone materials of the tool manufacturin...

متن کامل

EDM machinability and dry sliding friction of WC-Co cemented carbides

A number of WC-Co cemented carbides with 6–12 wt. % Co were machined and surface finished by grinding or Electrical Discharge Machining (EDM). EDM was executed in deionised water through several consecutive gradually finer steps. Correlations between Material Removal Rate (MRR), surface finish and EDM parameters were derived. The quality and integrity of surface finishes were analysed by Scanni...

متن کامل

The Effect of sintering temperature on microstructure and hardness of milled WC- 20 wt.% equiatomic (Fe,Co) cemented carbides

In this study, WC–20 wt.% equiatomic (Fe,Co) powder mixture was milled in a planetary ball mill. The effects of different milling time (15 min, 5h, 10h, and 25 h) and sintering temperatures on the microstructure and mechanical properties of this equi-Fe substituted cermet were investigated. The structural evolution and the crystallite size changes of the powders during milling were monitored by...

متن کامل

Effect of SiC nanoparticles addition on mechanical properties and wear resistance of cemented carbides fabricated by spark plasma sintering

WC-10Co cemented carbides containing 1 to 4 wt% SiC nanoparticles were prepared by spark plasma sintering. The effects of SiC content on microstructure, mechanical properties and wear resistance of the sintered materials were studied. Microstructural studies showed that SiC addition resulted in WC grain coarsening. In addition, the hardness decreased with increasing SiC content. However, the fr...

متن کامل

Mechanical strength of ground WC-Co cemented carbides after coating deposition

Manufacturing of hardmetal tools often involves surface grinding, ion etching and final coating. Each stage throughout the manufacturing chain introduces surface integrity changes which may be critical for defining the final mechanical behavior of the coated tools. Within this context, an experimental test program has been developed to assess the influence of a coating (TiN) deposition on surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015